نوع مقاله: مقاله پژوهشی
نویسندگان
1 عضو هیأت علمی تمام وقت، گروه مهندسی عمران، دانشگاه آزاد اسلامی، واحد آیت الله آملی، آمل، ایران
2 گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی، واحد آیت الله آملی، آمل، ایران
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
The steel braced frame system is one of the lateral load resisting systems which is used extensively for low- to mid-rise buildings. In this structural system, the braces can be arranged in different forms along the building height due to different reasons such as architectural and structural limitations or design considerations. The bracing arrangement affects the seismic performance of the structural system and each of the elements. In this study, the impact of bracing arrangement along the building height on ultimate failure capacity and collapse fragility curves of steel CBFs is investigated. For this purpose, 4 and 8-story steel CBF buildings with 6 different arrangements of braces were selected and modeled in PERFORM-3D software. The models were then analyzed using the incremental dynamic analysis (IDA) method. Afterwards, the collapse capacity of the models and the uncertainty index were calculated, and the collapse fragility curves were generated. The results show that, by modifying the arrangement of braces without significant changes in lateral stiffness and fundamental period of structure, it is possible to increase the collapse spectral acceleration and decrease the probability of collapse at the maximum considered earthquake intensity.
کلیدواژهها [English]